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Static and dynamic critical behavior of X Y  systems in cubic anisotropic 
crystallines, with extended defects (or quenched nonmagnetic impurities) 
strongly correlated along ea-dimensional space and randomly distributed in 
d - e  d dimensions, were studied. These extended defects make the systems coor- 
dinate anisotropic, resulting in unique critical behavior due to competition 
between the cubic anisotropy and the coordinate anisotropy. The systems were 
analyzed by an g 1/2 ( e - - -4 -d )  type of expansion with double expansion 
parameters based on a renormalization-group (RG) approach. Critical 
exponents were calculated near the second-order phase transition point and the 
behavior of the first-order transition was evaluated near the tricritical point. 

KEY WORDS:  Phase transitions and critical phenomena; defects; random 
systems. 

1. I N T R O D U C T I O N  

Recently interest has been gathered in the statics and dynamics of various 
condensed media with structure defects.(1) For example, they are concerned 
with crystals with continuously distributed dislocations and disclinations, 
superfluids with quantized vertices, liquid crystals with disclinations, and 
so on. Further, as the same category we can regard amorphous matters, 
spin glasses, spin systems with frustations or with statistical defects, and so 
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on. Efforts to classify defects in condensed media with the homotopy 
groups have been continued (2) but no general approach to the study of the 
statics and dynamics for them has yet been found. However, study of phase 
transitions and critical phenomena in simple model systems with structure 
defects, in particular in reduced spin systems, has been performed. In this 
paper attention has been focused on simplified spin models. Heretofore, 
pointlike defects have been treated as quenched random nonmagnetic 
impurities according to the following schemes: (1) the heuristic argument 
advanced by Harris(3); (2) the renormalization-group (RG) approach to 
the N(>~2)-component systems, based on the e ( - 4 - d )  expansion 
(d= dimensions of space), advanced by Grinstein and Luther, (4/ 
Lubensky,(5~ Aharony,(6) Yamazaki, (7) and others; (3) the RG approach to 
a single-component (Ising) system, based on the e ~/2 expansion, advanced 
by Khmel'nitsukii (8) and Shalaev. (9/ Extended linear or planar defects and 
randomly distributed pointlike defects in crystal lattices have been studied 
in quenched random impurity systems with extended impurities by 
Dorogovtsev, (1~ Boyanovsky and Cardy, (H) Lawrie and Prudnikov, (12) 
and others. Their models were used for low densities of defects. 

In the present paper we investigated the static and dynamic critical 
behavior of XY-spin systems in cubic anisotropic crystallines, with exten- 
ded defects (or quenched nonmagnetic impurities) strongly correlated 
along ca-dimensional space and randomly distributed in d - ~ a  dimensions. 
It was assumed that defect density is lower than that of the critical per- 
colation, and that cubic anisotropy does not disappear in low-density 
regimes. The extended defects make the lattice systems coordinate 
anisotropic, and unique critical behavior appeared as a consequence of the 
competition between cubic anisotropy and coordinate anisotropy. In 
addition to the features referred to above, the most striking new features of 
these systems are: (1) e~/2-type expansion can be applied to X Y  spin 
systems (previously this expansion method was applicable only for Ising 
systems) and (2) the first-order phase transition and the tricritical behavior 
can be more readily described. 

In Section 2 the effective Hamiltonian and defect potential probability 
distribution of the systems is specified. In order to study static and dynamic 
properties of the systems within the frame of the Langevin equation using 
the replica method, the effective dynamic-replicated Hamiltonian and the 
generating functional of the vertex functions required for the study of the 
critical behavior of the systems was derived. In Section 3 the renor- 
malization constants, applying the RG approach and the dimensional 
regularization scheme for systems with double expansion parameters 
{~, ca}, were obtained. Using these renormalization constants the RG 
equations including their coefficient functions {/~}, {t/, 7, ~} were deter- 
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mined in Section 4. According to the RG theory, the fixed points, their 
stability and the trajectories of flows in the interaction space, of the systems 
were evaluated. The static and dynamic critical exponents for perpendicular 
and parallel components of the systems were calculated on the flow trajec- 
tories of the second-order phase transition. In Section 5 the first-order 
phase transition was shown to appear near the marginal boundary of the 
thermodynamically stable region and its behavior, including the 
magnetization jump, temperature shift, etc., was evaluated at the transition 
point. Section 6 consists of conclusions. 

2. H A M I L T O N I A N  A N D  G E N E R A T I N G  F U N C T I O N A L  

For XY-spin systems in cubic-anisotropic crystallines with extended 
defects strongly correlated in ej dimensions and randomly distributed in 
d - e d  dimensions, the effective Hamiltonian is 

f 1 2 v)= d xF- E {Ivl 0 l 2 2 ~2 ~:1 +a~Igllq0=[ -t-rbq0=-t- V(x• 

-~ -uc F 4 (2.1) 
+ ~  ~ = 1  = 

where ~ and tic are the isotropic and cubic-anisotropic interactions, respec- 
tively. The order parameter (OP) of the spin fluctuations, opt(x, t) consists 
of two components (c~ = 1, 2), and r b stands for the inverse magnetic sus- 
ceptibility in the mean field (MF) theory. As the extended defects in ea 
dimensions (symbolized as the II component xll ) made the space 
anisotropic, a coordinate-anisotropic constant a M was introduced. We con- 
sider the cases where the random defects distributed in d ( = d -  ed) dimen- 
sions (symbolized as the _1_ component x• can be regarded as an effect of 
random potentials; the atomic spacing ~ the spin correlation length 
linear size between any pair defects, which are valid for defect concen- 
trations well below the critical percolation concentration Pc.. That is, 

2 '~v(V)=~expI- (8A)- l  f dax• VZ(x• (2.2) 

where ~ff~ is a normalization constant. This distribution generates only non- 
trivial correlation ( V ( x . )  V(y•  = A6a(x• - y• Therefore, A stands for 
the amplitude of two-point correlation, i.e., it should be a positive constant 
which is proportional to both the defect concentration and random poten- 
tial strength (13) as the zeroth-order contribution. In general, it is considered 
that the linear term in V shifts only the temperature term r b and that 
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deviations from a Gaussian distribution are irrelevant and contribute only 
higher-order contributions (following arguments by Lubensky(S)). 
Anisotropy a~ is induced by the extended defects. With the introduction of 
inhomogeneity in the quadratic term [q2 + 2 2 abqll-t- rb] I~o=(q, ~o)l ~, the scal- 
ing dimensions in the diagram expansion are modified. Scaling each of the 
internal momenta (coordinates) q•177 by unity and qll(xll) by ab~(ab), 
gives the dimensional relations 

l-ab] = ~K• [ (p2]- .=[K•  ea 
L/ellA 

[-/~s] = [-blc] = [ - / ~ •  d[ab] % [A] = [ - / ~ •  d+ed (2.3a) 

where [ ] denotes the dimensions in terms of the momentum units ~Cz and 
xll- Thus the following expressions for the interactions were adopted: 

(~w = a~"uw for w = s, c (2.4) 

The static and dynamic properties of the systems are assumed to 
follow the Langevin equation (~4) 

~o~(x, t)/3t = -2h 6~/(3~o~(x, t) + rh(x, t) (c~ = 1, 2) (2.5) 

where 2 b is the kinetic coefficient for the nonconserved systems. The 
Gaussian white-noise fields {th(x, t)} are defined by the probability 
functional 2 

~(q)=.A#~expI--(4)~b) l l d~xdt ~ 2 ] : ~= 1 t/~(x, t) (2.6) 

According to the method of Martin et al., (15) Bausch et al., (16) Dominicis et 
al., (17) Yamazaki, (18) and Lawrie et al., (12) this is reexpressed by introducing 
the response fields { ~ ( x ,  t)} and their source fields {h'~(x, t)} as 

N~(t/, h) = ~ j 2 ~  exp ~ - ~ (2.7) 

The generating functional for the connected correlation and response 
functions are 

~(h', h ) =  - In  ~(/~, h) 

~e(~, h) -- f ~ t / ~ ( ~ ,  h') exp dax dt ~ ha(x, t) ~o~(x, t) 

if 2 
~o~q5 det I~/~1 exp ddx dt 

r 
( ~ +  h~q,~)- A ~ ] 

~ = -  ddxdt[(o~2yl~o~+igo~(2b ' a~o~/Ot+c3af/6~o~)3 (2.8) 
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where ha denotes the source field for the OP field q)~. The tadpole diagram 
of single response propagator loop in the perturbation expansions was 
neglected, and the Jacobian r6tl/,S(ol dropped, 

The correlation and response functions of the quenched random 
systems were calculated as the average of those generated over the random 
potentials. Using the replica method for this average procedure ( ( )RA) ,  
we can express the M-replicated partition function as 

t Lf 1}> :~= 1 RA 

2 ] =-f f d xdt a=lE (~Tfix~J~-hJoc~oJ ct)-~[:~({vl) 

- - _ _ •  - -  c t b v l l  q- rb)(19jc ~ 
j = l  :~=1 

k = I f l = l  

_&/ 2 

+ 2A 2 2 f ddx d"y dt dt' 6~(x - y) (o/~(x, t) 
j,k--1 a , f l = l  

• ~oj~(x, t) q3k/~(y, t') ~ok~(y, t') (2.9) 

2 where ~q9 e = 1-I~ 1 ~P~ = 1Fl~ ~ ]-L = ~ d(pe~. Therefore, from the effective 
generating functional averaged over the random potentials 

F(h,h)=_(J~(h,h))RA=-lim M-~ln~(M)(~,h) (2.10) 
M~O 

we can generate the cumulant Green's function G (e'") 

f ( ' h , h ) = E ( ~ l ! K l ! ) - l f ~ ( 2 ~ [ ) ~ ( X [ )  t'~'(B'n)~ {.~} {:r 1 ~1 ( "~- ~~ , . . . ,  x,zt,~) 

x Za~(2T?T)..'~is~(2c~?z)h~(x~t,)'"h~.(x,t,) (2.11) 

To reduce the number of diagrams to calculate, using the Legendre trans- 
formation 2 

Y(q~ ~~ f d~xdt E [Z~O~+h~o~] (2.12) 
c~=l  

we can derive the one-particle irreducible vertex functions F (~,'~ and the 
equations of motion 

h~(x, t)= 6F/60~(x, t), h~(x, t)= 6F/&o~(x, t) (2.13) 
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The static vertex functions and free energy are evaluated as the limit of 
zero external frequencies 

F~"~(q,,..., q . ) = V  (1"" '}(q,,..., q,, {~=0})  

F ( M ) - F ( O ) =  ~, (nI ) -~M'F ~'" 1)({q=0}, {~0=0}) (2.14) 
n = l  

Finally the tensorial structures of interactions in the effective 
Hamiltonian (2.9) and the diagrammatic rules in the perturbation expan- 
sion were summarized (Fig. 1). In Fig. 1 the interactions {us, u~, and A} 
(designated {u} ) 

1 
~,(i,j,k,l)-f~,S~j~/, S~j~=-~(6~/6~z+6~@+6,6jx) 

A(/j; kl) - ADi/~, D~/~z = 30.g~ (2.15) 

are drawn by @, C], and .... respectively, and are associated with the ver- 
tices F~g~/~, F~g~ '3', and F~ 2"2~, respectively. In diagrammatic expansion all 

Response [G ''''~] 

Co re  t o. 

hterectio~s 

crdT'] 

Dded: 

~,~  

~t 
C4At)a Us 

i,~ i,O 

Fig. 1. Diagram elements constructed by the Hamiltonian (2.9). 
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diagrams conserve momentum and frequency at each vertex of u s and u c, 
while the defect vertex A requires the constraint (2rc)~+~a~d(qll)6(CO). In 
dynamics causality plays an important role necessitating all closed-loop 
diagrams constructed with two or more response lines to vanish. Further- 
more, we can omit the tadpole diagrams including a single response line, 
which are rigorously canceled by the Jacobian term. 

3. R E N O R M A L I Z A T I O N  A N D  ITS C O N S T A N T S  

Using the effective Hamiltonian (2.9), together with the generating 
functional (2.13), we expanded the Feynman diagrams for the correlation 
and response vertices {F (1'1), F(g1,3), F(gX/3), F(~ 2,2), and so on} (designated 
{F(e'n)}), in order to study critical behavior of the systems. As the Feyn- 
man diagrams have singularities as {e} ~ 0 [ {e} stands for the set of e and 
g ( - e  + ed)] in the integrals over the momenta despite a relevant beneath 
four dimensions according to dimensional analysis, we used the dimen- 
sional regularization of 't Hooft eta/ .  (19) and determined the renormalized 
fields, interactions, and vertices. 

Initially, the renormalization constants {Z~o, Z~2, Z .  Za, Zg s, Zgc, 
Za} (designated {Z}) are defined 

z /2 a;: Zo 4 
rb = rb~ + l r  l, ,~ff l  __ t g 2 Z ; o 2 - I  

u~+=~:K21Zgsg,, u,h=K~K21Zgcg~, Ab=~KaIZ~,6 (3.1) 

then the renormalized vertices are related to the bare vertices as 

r(~'"~({p}, {co}, g .  g,,, fi, a~, t, 2, ~) 

= 7 ( f i  + n)/2 F'(&n )t" ~ --b ,{P}, {CO}, U,b, U~b, Ab, a 2, rb, 2b) (3.2) 

where the subscripts R and b stand for the renormalized and bare quan- 
tities, respectively, and Kd--2rd/2/(2rc)aF(d/2). To make the renormalized 
interactions { gs, g~., 5 } (designated { g}) dimensionless, a renormalization 
parameter tc with momentum unit was introduced. As all renormalization 
constants {Z} and bare vertices {F (e'~)} are Feynman expanded as power 
series in {g}, the renormalized vertices are also expressed by the 
polynomial form of the renormalized interactions {g}. That is, (1) the 
Feynman diagrams for the vertices {F (~'")} with respect to the bare interac- 
tions {u} were expanded; (2) the bare interactions ({a 2, 2~7 ~} and {u}) 
were replaced by renormalized ones times the renormalization constant 
according to (3.1); and (3) the Feynman integrals were evaluated. 
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Seven renormalization constants {Z} were determined so that the 
associated renormalized-vertex functions became finite, i.e., the coefficients 
of {Z} canceled the poles in {e} at each order of {g}. Each coefficient of 
the renormalization constants {Z~, Za2, Z~, Z~,} is explicitly determined by 
the elimination of the poles in {e} arising in the vertices {~F(~'~)/~p~, 
~/-(1,1)/@~, F(1,1), 0F(1,1)/OCO}. Here F (1'~) means identity expressed by both 
sides of (3.2) with ~ = 1 = n, and the values of four cases are evaluated at 
zero external frequency co and zero momentum p. Similarly, the renor- 
malization constants {Zg,, Zg c, Z~} are determined, so as to remove the 
poles appearing in the vertices { F(g 1,3),/-(glf3),/-~?,2)} [expressed by (3.3)], at 
the four zero external frequencies and zero momenta. It is remarkable that 
(i) three vertices {F(J, ,3), r (~,3) F~ 2,2) } have similar characteristics to those of 

gc 

the interactions {g} with respect to the tensorial structure of spin and 
replica indices and to the 6 functions of the external frequencies and 
momenta; (ii) all renormalization constants {Z} are determined order by 
order in e and g; and (iii) the renormalization constants (except Z~.) are the 
same as those obtained in the static case. 

The explicit diagrams and their contributions for the vertices {F (~'"1} 
are listed in Appendix A (Figs. A1, A2 and Tables AI, AII). Using the 
dimensional regularization in these expressions, the renormalization con- 
stants {Z} were obtained: 

1 1 1 4 
Z ~ ~  3(e + g) 

2 
Za2 = 1 - = 6 

2 1 _ 4  6 
Z ' =  l +~e gs + f~  gc g 

4 
Z~= 1 - - 6  g 

Z g  = 1 + -f~ gs  + - gc  - - =  - 8 + g2 + 

[ -5 (6 -e ) ]  2 , 1 + 

1 2 2 
- -  gs CS + ~ gc (5 -- -~ (5 

2 
+ - -  ( --24e -- 20g-  2g 2 -t- 19~g-- 2g 2) go6 

eg(e + g) 

4 
+ ~ [120 + 4e - 45g] 62 

[ - 216e  - 240g-  18~ 2 + 178eg] gs6 
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2 3 24 (11  2 3 \  z .  F l l ( 3 - ~ ) ]  
Zg = 1 + -  g ~ + ~  g c - - : - 6 +  

(54 - -  l_7e'~ 2 2 
+ \ 24~ 2 / I g~ 4- 3eg(e~+ ~) 

( - 120e - 144g-  10e 2 + !02eg) g~6 

+ - -  4 
[ -- 12(5e + 6g) -- (5e -- 51g)e] g~c~ +~-/[120 + 4e -- 45g]62 

4 l 16 36 - -  58 2 10 -- 2e 5(6 -- e) g~ 
Z~ = 1 + ~ g s  + -  ~ ~ gs +-lj~2 gsgc-~ 24e2 

- e 2 + 6 e g - 6 e - 1 4 g ( ~  ) 1 0 ( 4 - g ) 6 2  (3.3) 
+ eg(e+g) - g s + g c  64- g ~  

4. RG EQUATIONS A N D  CRITICAL BEHAVIOR 

Of interest here are the static critical behavior in the equilibrium and 
the dynamic critical behavior in the relaxation process. Such critical 
behaviors are measured in the L and II directions experimentally through 
correlation, susceptibility, and specific heat measurements, neutron scat- 
tering, and so on. These physical quantities were then theoretically 
investigated in the vertex functions F ~  ~ as a function of the correlation 
length. The behavior is evaluated by the RG equations 

[~-�89 {co}, {g},a2, t, 2,~c)=O for n(~>l)integer 

(4.1) 

where 

tl{ g} =- ~ ln Z,o{ g), 

_-_- ~c(0/0~c)I bare = ~C0/C3~C + fl{g} 0/@ -- 7,2{ g} a2c~/Oa 2 

- t o / 0 t  + 

fl { g } 8/8g --- fl= { g } O/~?g s + tic { g } O/Ogc + fl,5 {g } 8/~36 

? = 2 { g } - ~ l n Z a 2 { g } ,  ?,{g} = ~ l n Z , { g }  

f{g} = ~ In Z,~{g) (4.2) 

By substituting the expressions (3.3) into (4.2), we obtained the expressions 
for {fl=, tic, fl~} (designated {fl}) and {t/, 7a2, ?,, f} 
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5 5 5 5 g2 
-- fl J g , = e -- " 5 g s -- g ~ + 2 4 6 + -j f s + ~ g , g c + -f ~ c 

(3 5 89) - 19) ( 4 5 - 4 ~ ) 6 2  + 2 \  -~---j-) g ,6+2  ( 4 ~ -  g c 6 + 8  

3 23 11 17 
- f l c / g , = e -  Z g s - ~  gc + 246 +--__ g~ +-~- gsgc +'-~ g,~ 

+ (5  ~ - - 5 1 ) [ 4 g s +  g c 1 6 + 8  ( 4 5 - 4 ~ )  g )L3 " 

4 5 ~ 4 5 ge 
- - f l a / 6 = g - s  g s -  g~ + 166 +-~ g'; + s  g, gc +-- ~ , ,  

+ 2 (2-~-  13)(~ g, + go) 6 + 16862 (4.3) 

_ _  1 2 1 2 4 q -- ~ g~ + ~ g, g,. + Y~ gc -- ~ g~6 -- go6 +462 

y~,2 = 26 

7,=2__2 1 3 g , - ~ g c + 4 6  

= 2 + 46 {4.4) 

At the critical point, since the correlation length { is infinite, the 
physical properties should be invariant for any change of the scale 
parameter x (~c ~< {). That condition is satisfied when 

fl,{g*) =/~{ g* } =/~a{g* } = 0 (4.5) 

The interactions {g*} are designated the fixed point. It consists of the 
Gaussian system G, regular X Y  (Ising) system PxY (P;), unphysical system 
U, extended defect J(Y (Ising) system Dxr (D;), and extended defect 
(regular) system with cubic anisotropy D~xv (P~cr), Their expressions of 
single loop order, for simplicity, were obtained as follows: 

g,* g.* 6" 
(i) G 0 0 0 

(ii) Pxr  35 0 0 
(iii) P; 0 ~ 0 
(iv) U 0 0 _ l g  
(v) P~'r ~ -- ~8 0 

(vi) Dxr  3(3g- 2~) 0 ~6(5g-- 4~) 
(vii) D; 0 166" 6* 

(viii) O~r 246"r - 166"r 6*r 
(4.6.1) 
(4.6.2) 
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where 6* ~ 1/2" [3g(3g- 2e)/2(89g- 36e)31/2 and 6*y--- [3g(3g-2e)/ 
8(353g- 36e)] ~/z with a selected solution of 6* > 0. The fixed points ( i?(v) 
have already been studied. In the two remaining cases, as the determinant 
( - ~ / g }  expressed by (4.3) is degenerate in order {e} but nondegenerate in 
order {e2}, the effective interactions {g*} were obtained in the {el/2} - 
expansion form. The fixed points (vi)-(vii), which were studied by 
Dorogovtsev, ~~ Boyanovsky et aL, ~ )  and Lawrie et al.,(12) coincide with 
those for e d = 0. The final fixed point (viii) gives new results. 

The results further indicate that (1) Pxy, P J, and Dxy always have 
positive interactions for the physical dimensions (g and g positive); (2) U 
never occurs because its interaction is always negative; (3) The g~ interac- 
tion of PC xy and DScy is negative, i.e., their systems choose the easy axes 
along ( • l, 0) or (0, + 1 ) directions; and (4) Dt and D[v r have positive real 
values 6* for g> 2e. 

System stability near the critical point can be investigated by the 
eigenvalues of the matrix of the derivatives of ~ e  {~} with respect to 

Dxy: 21, 22 = I[-A ___ (A 2 - 9)1/2], ,)~c = (3g-  2e)/2 

with A -= 2[(3e + ca) + 4ea], B~- 32(e + 3ea)(e + 5e~) 

(vii) DI: 2, = -86/*, 21 = 0, 22 = 83* 

(viii) DScr: 2L = -8c5"v, 22=0, 23 --- 83~y (4.7) 

gj~ {g}, Ofii/~gj, at the fixed points: 

(i) G:25= -e,  2~= -e ,  2~= - g  

(ii) Pxr:  2~= ~, 2~ = ~/5, 2~ = - (5g-4~)/5 

(iii) P,: 2,--- -~/3, 2~=e, 2 ~ = - ( 3 g - 2 e ) / 3  

(iv) U: 2~ = (3g-  2e)/2 -- 2,, 2~ = g 

(v) P ) r :  21 = e, 22 = - e / 3  , 2~ = - ( 3 g -  2e)/3 

(vi) 

Here "~s, 2c, and 2~ stand for the eigenvalues in the direction of the axes g~., 
g,., and 6, respectively, and 21, 22, and 23 denote the eigenvalues in the 
direction of the orthogonal axes (eigenvectors). The values of 6* in the e 1/2- 
expanded systems have been expressed in the corresponding fixed points. A 
stable fixed point against the long-range fluctuations has positive eigen- 
values, and is characterized by an ingoing flow for increasing correlation 
length. The fixed point G (U) is unstable (stable) for any interaction of {g} 
and the tendency in the 6-direction strengths with increasing ca. The fixed 
point PxY (P~) is stable for the interactions of g, and g~ (gc), while the 
instability of both systems becomes significant for the b interaction with 
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increasing ed. The fixed point P~cr is stable only along one direction of 
eigenvectors on the g,-g~ plane, while instability along the other eigenvec- 
tors heightens with increasing e and ea. The fixed point D x r  has interesting 
features: It is the most stable, having three positive real eigenvalues for the 
dimensions 0 ~< ~d~< a/[17 + (384) 1/2 ] (i.e., 0 ~< ea/e < 0.02733) but two com- 
plex eigenvalues with positive real part in addition to one positive real 
eigenvalue for the dimensions ea/e > 1/[17 + (384)1/2]. This reveals the fact 
that flows in the interaction space approach the fixed point monotonously 
in the former case but spirally in the latter case. Fixed point Dt is unstable 
for the gs interaction; it is marginal in one direction and stable in the other 
direction, of the orthogonal axes on the g , . -  6 plane. Fixed point D~cy has 
stable, marginal, and unstable eigenvalues in certain directions of three 
orthogonal axes. Note that in the regular systems the system P x r  is the 
most stable, but with the appearance of defects the extended defect system 
Dxr  becomes the most stable. Its flow trajectories approach the fixed point 
Dxr  nonoscillatory for small e j e  but spirally for large ea/e. 

The fixed points and the flow trajectories are summarized in Appen- 
dix B and drawn schematically in Fig. 2. 

The critical behavior of the physical quantities of the systems can be 
evaluated by the scale transformation of all external momenta ( P i - *  Kp• 
Pit ~ a-X~Ptl) and frequencies (~o ~ )~co) in the vertices F (1'" 1). By recalling 
the definition of F/l'n 1) ( _  set of the one-particle irreducible diagrams of 
G ~ 1)/]-['[G(l'l)]) and the dimensional relations (2.3a), we get the 
dimensional expression 

x [a -~/2~2+~] ,[,~o][.~o] . 

= [xa. a~o 20] (4.8) 

where d, = - d - n ( d - 2 ) / 2  and e, = - ( n -  2)e j2 .  Thus the renormalized ver- 
tex functions F (1''- 1) have the same dependence as F ('), with respect to the 
parameters: 

r(l,"-l~({~p., a-l~cpll}, {2~o}, {g}, a 2, t, 2, K) 

= lca"ae"F(')({P~ , PlI}, {co}, {g}, t) (4.9) 

On the other hand, the renormalization constants are independent of 
a 2, t, 2, and ~. The behavior of the vertices F (1'~ 11 can be described with 
the RG equations 

[~T8/8"{+ 18/8I + ~aZO/ga 2 - fl { g } 8/~g + 7, tO~St + n ( d -  ea + ~ea - 2 + q)/2 

- ( d -  ~ +  ~ea)] r~"~({lp• ap,}, {T~o}, {g}, t)=0 (4 .10 )  
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0 . 2  .. 

Fig. 2. Fixed points and schematic trajectories of flows in the interaction space (gs, gc, 6). 
The e-expanded fixed points (i.e., the Gaussian [G], regular XY [PxY], regular Ising [P~7, 
unphysical [ U], regular XY with cubic anisotropy [P)r] and extended defect XY [Dxr]) are 
denoted by 0 ,  and the e~/2-expanded ones (i.e., the extended defect Ising [Dt] and extended 
defect XY with cubic anisotropy [D)r ~) are marked by @. In the regular systems (without 
defects 3 = 0) the XY system Pxr is most stable; with the appearance of defects the extended 
defect XY system Dxy becomes most stable. 

where {T, l} are arbitrary dimensionless parameters and 

~{g} = 1 +Ta2{g} (4.1I) 

The solution of the RG equations at the fixed point describes system 
behavior at (near) the critical temperature t = 0 (t ~ 0): 

F(~)({p-,apll}, {co}, { g * } , t ) = t  2 ~ "~g(')({t Vip• ~"apll} , {t X~o}) 

with 

v •  v l , - {v•  7 -  ( 2 - ~ ) v •  

2--C~--(d--ed)V• 2fl -- 2 -- ~ -- 7, 2--~V• (4.12) 

822/41/3-4-1[ 
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where { - { { g * } ,  q -q{g*} ,  ~--=ff{g*}, and g{~) stand for the 
homogeneous functions. Similarly, the free energy of the systems (n = 0) is 
expressed for t < 0 as 

F ( M , t ) = t 2 - ~ f ( M t  e) ( t~  I - t l )  (4.13) 

and the response function, G (2) =-- 1//"(2), behaves as 

G(2}(P• Pll, oo, t) = t "eg2(t-V'p• t-VliaPll, t ~co) (4.14.1) 

near the critical point, and just at the critical temperature (t = 0) 

G(Z)(P• Prl, ~, O)= ~ Ip•177 [pi[ -r og[p• zi) 
~lapl, l.,, 2g211(P•162 m[ap,t t zH) 

where 

(4.14.2) 

2 -  q• = {(2-q l l )=  2 - t / ,  z •177  (4.15) 

and {f, ~2, g2• g211} denote the homogeneous functions. The critical 
exponents {t/., v•177 and {q,, vll, zll } are associated with those in the 
medium perpendicular and parallel to the extended defects. 

The explicit expressions of single-loop order for the critical exponents 
are given by 

t/• =0, thl = 46", v• =1(1 +26*), v, =1(1 +46*) 

~ = l + 2 a * ,  2 - c~=  2(1 + 2a*), 2 f l = 1 + 2 6 .  

z• =2(1 + 2a*), z ,=2 ,  2 = 1 + 4 6 .  (4.16) 

using 

q =  - -3362=0+  O({~}), 7u2=26 *, 7 ,=2 (1 - -26" )  

~ =2(1 +26"), 4 = 1 + 2 6 "  (4.17) 

where the values of r/are negative in two-loop order but null in single-loop 
order. 

The values of these critical exponents of the extended (pointlike) 
defect-XY systems with ea>0 (ea=0) are tabulated in Table I(a) and I(b) 
for e=  1 and e=2 ,  respectively. For comparison, those of the regular 
isotropic (cubic anisotropic) systems are tabulated in Table I(c) (I(d)), 
which have been obtained by LeGuillou et al32~ (Yamazaki (is)) up to the 
order of g 2. Here it should be recalled that (1) in the pointlike defect 
systems a parallel component of the critical exponents does not exist; (2) in 



Table I. Comparison of Critical Exponent Values of the Extended Defect XY 
Systems with Those of the Pointlike Defect-XY Systems and the Regular 

(Isotropic and Cubic Anisotropic)-XY Systems ~ 

Case(a) :  ~=1 ,  N = 2  
0 0.034 0.244 0.534 1.069 0 2.138 -0 .138  
0.2 0.043 0.360 0.543 0.586 1.086 0 0.172 1.086 2.172 2 -0 .172  
0.4 0.050 0.477 0.550 0.600 1.100 0 0.201 T 2.201 2 -0 .201 
0.6 0.056 0.594 0.556 0.613 1.113 0 0.226 2.226 2 -0 .226  
0.8 0.062 0.710 0.562 0.624 1.124 0 0.248 2.248 2 -0 .248  
1.0 0.067 0.827 0.567 0.634 1.134 0 0.268 y 2.268 2 -0 .268  
1.2 0.072 0.944 0.572 0.643 1.143 0 0.286 2.286 2 -0 .286  
1.4 0.076 1.060 0.576 0.652 1.152 0 0.304 2.304 2 -0 .304  
1.6 0.080 1.177 0.580 0.660 1.160 0 0.320 2.320 2 -0 .320  
1.8 0.084 1.294 0.584 0.668 1.168 0 0.336 ,~ 2.336 2 -0 .336  
2.0 0.088 1.352 0.588 0.676 1.176 0 0.351 1.176 2.351 2 -0 .351 

Case (b): e = 2 ,  N = 2  
0 0.046 0.309 0.549 1.097 0 2.195 -0 .195  
0.2 0.055 0.442 0.555 0.610 1.110 0 0.221 1.110 2.221 2 -0 .221 
0.4 0.061 0.575 0.561 0.622 1.122 0 0.244 T 2.244 2 -0 .244  
0.6 0.066 0.709 0.566 0.632 1.132 0 0.265 2.265 2 -0 .265  
0.8 0.071 0.842 0.571 0.642 1.142 0 0.284 2.284 2 -0 .284  
1.0 0.076 0.975 0.576 0.651 1.151 0 0.302 7 2.302 2 -0 .302  
!.2 0.080 1.109 0.580 0.659 1.159 0 0.319 2.319 2 -0 .319  
!.4 0.084 1.242 0.584 0.667 1.167 0 0.335 2.335 2 -0 .335  
1.6 0.088 1.375 0.588 0.675 1.175 0 0.350 2.350 2 -0 .350  
1.8 0.091 1.509 0.591 0.682 1.182 0 0,365 ~ 2.365 2 -0 .365  
2.0 0.095 1.642 0.595 0.689 1.189 0 0.379 1.189 2.379 2 -0 .379  

Case (c): Isotropic e = 1, ea=O 
N v ?, r/ z c~ 

1 0.673 1.310 0.019 2.0135 0.108 
2 0.722 1.400 0.020 2.0145 0.046 
3 0.820 1.478 0.021 2.015 0.011 

Case (d): Cubic anisotropic e = 1, ea = 0 

N Y r/ z 

3 1.222 0.021 2.015 0.244 

a The extended (e d > O) [pointlike (~d = 0)]  defect X Y  systems for e - l and ~ = 2 are classified 
for (a) and (b), respectively. For comparison the isotropic and the cubic anisotropic systems 
are classified as (c) and (d), respectively, whose results were obtained by LeGuillou and 
Yamazaki, respectively. 6", q~, and the (v• cr s tand for the fixed point value of 6, the 
crossover exponent for the randomness,  and the critical exponents expressed in (4.16), 
(4.17), respectively. The values of ~ are equal to those of 7 except for Ca= O. 
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the case of ed = 2 two-dimensional extended defect systems this model is 
not available simply because there are no magnetic atoms at all; (3) the 
regular-cubic-anisotropic fixed points are stable in the systems with N~> 3. 
As we stand on the point of view of understanding the phase transitions 
and critical phenomena in various random systems due to the defects 
(including dislocations, disclinations, etc.), impurities and so on by 
introducing the fractal dimensions into the extended defect systems, we 
consider the cases of ed with nonnegative real numbers. 

The characteristic features of extended defect systems may be sum- 
marized as follows: 

(1) The effective strength of random defect interactions 6* heightens 
with increasing ed and e (i.e., decreasing d). 

(2) The crossover exponent for randomness ~o = ~p + edVp (~p and Vp 
stand for critical exponents c~ and v for specific heat and correlation length 
of the corresponding regular systems) is positive, i.e., the randomness is 
relevant, and its values increase with increasing ej and e. 

(3) The values of v• (which corresponds to v in the regular systems) 
and vii become large with an increase of ea and e, but they are small com- 
pared with those of the regular systems, i.e., they are near classical values 
(such features also appear in 7 and 3). 

(4) Since v l l>v  • and t/ll>t/• (except for ed=0)  and since they 
increase with increasing ea and e, it roans that with an increase of ej, a 
short-range correlation develops more strongly in the parallel component 
and further in the two-dimensional systems, while the long-range 
correlation enlarges more rapidly in the parallel component near the 
critical point. 

(5) The higher-order corrections modify the classical values of ~/• 
and zl+. 

(6) The dependences of z• on ea and e are the same as those of ?, 
etc., while its magnitudes are larger than those of the regular systems. 

(7) The values of c~ are negative, i.e., the specific heat does not dis- 
play singular behavior. 

From these features we may conclude the following: 

(1) The randomness of the defect systems suppresses fluctuation 
effects and makes such behavior approach classical behavior. 

(2) As the extended defects cut the interacting path of the spins per- 
pendicular to the extended defect direction (H), the short-range correlation 
strengthens and the long-range correlation develops more rapidly near the 
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transition point, compared to that in the perpendicular direction. That is, 
in the parallel direction the fluctuations are stronger and the correlation 
length more sharply divergent. 

(3) As the defects randomly cut the path of the energy-energy 
correlation, the specific heat singularity does not appear. 

(4) The values of the crossover exponent grow with an increase of 
magnitude of the defect's role, and are positive. That is, the randomness of 
the defects is relevant. 

Finally the oscillating behavior of, e.g., the susceptibility of the Dxy 
systems, can be expressed by 2 = 2R _ i2I (AR,)~z real) in (4.7), as 

Z -~ = c~ t ~ exp[c 2 t ;~" cos(2z in t + 0) + C 3 t ~~ 

where Cl, c2, c3, and 0 are nonuniversal constants. 

5. F I R S T - O R D E R  P H A S E  T R A N S I T I O N  

Stability arguments of the fixed points suggest that not only the con- 
tinuous phase transition but also the discontinuous one appear, depending 
on the path of flow in the interaction space. Since the behavior of second- 
order phase transition was investigated in the previous section, here we 
take up first-order phase transition. Since the easy axes of the system D ) r  
consist of types (+_ 1, 0) and (0, + 1), the phase transfers from a state 
ordered uniaxially, e.g., along the x axis to the para-state. 

The free energy of single-loop order is derived by (i) expressing bare 
free energy [ f  b = Fo(M ) + �89 Tr In { c52Fo/6q~ ~(x) &o~( y)l ~(x)= M } ], (ii) renor- 
realizing it using the replacement (3.1), (3.2), and applying the Taylor- 
expansion scheme around p2 ( =_p2 + aZp~) for the integrands with respect 
to the internal momenta {p• l n ( p Z + A ) = l n p Z - A / p 2 + A 2 /  
{2pZ(p + q)Z}lu2=~2], and (iii)integrating over {p• Pll} after the change of 
variable pJa  ~ Pll. The dimensionless free energy expression is 

F(~) = lt0r ) M2(K) + [gs(~c) + gc(~c) -- 66003 M4(~)/4! 

+ ll-t(K) + { gs0r go(tr -- 66(~)} M2(~c)/232 

x Eln[t(K)+ { g,(~c) + gc (K)-  66(~c)} M2(K)/2 ] + �89 

+ ~[t(~c)+ {gs(x)--66(x)} M2(K)/6] 2 

x [[lnEt(~c)+ { g s ( ~ ) -  6~(~c)} M2Qr + �89 (5.1) 

where ~c is the renormalization parameter and the free energy is expressed 
by ~c-da~F(~) with ~c = ~c• 



514 Yamazaki et  al.  

The extremum of the free energy derives M(~c)= 0 or the critical tem- 
perature t(~:): 

t(~c) = 0 and t(~c) = exp{-1  - 2 / [ ~ g , ( ~ c ) + l g c ( ~ c ) - 4 g @ c ) ] }  (5.2) 

The thermodynamic stability can be given as 

02F(K)/OM2(K)I MO~):0 = 1X-1 (K)  

Z - l ( t c ) = t ( K ) [ 2  + Zgs(~c)+�89 (5.3) 

The flow trajectory and thermodynamic stability for 6 near null are 
illustrated in Fig. 3. The thermodynamically stable regions are enclosed by 
the marginal surfaces 2(g, - 66) + g,, >>, 0 and g~ - 66 + g,~ >~ O. Choosing ~c* 

..P~ (s:0) 

�9 / 
< 1 cJ=/E 

~ --&__.~- ' , ,~._ ' 

~ C , P~ CS:o) 

Fig. 3. Flow trajectory in the interaction space (g~, go) ncar (5=0. The shaded rcgion 
dcnotcs the thermodynamically stable region in thc mcan field theory. The principal trajcc- 
torics connecting the fixcd points arc hatched by a dashed curve. Thc surfaces g, =0 and 
2g s + 3g,. - 48((5 - (5") = 0 arc the surface of thc tricritical point. 
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at the edge of the stable region gs(tr + g,.(x*) - 66(~c*) = 0, we investigate 
the region 

[ g~0c*) - 630c*)]/6 _= Ael/e 

gs(~*)+ gc(~c*)-630c*)= Be (B>0)  

t(~C* ) =- b~l/2[[g~ 

M2(K *) = C~; 1/2~e--1~ (5.4) 

for the D}y~P~y]] fixed point. The first-order phase transition takes place 
at the point where the free energy equals that of the para-state and 
becomes minimum with nonzero magnetization (M r 0): 

b+ { Bc + �89 + 1] =0 
(5.5) 

c[2b + ~Bc + �89 + �89 = 0 

Therefore we get the relations 

b= J A2c and c = 1 exp [ -  ( ~ + ~ - 5 ) 1  (5.6) 

The solution satisfying (5.6) is related to first-order phase transition 
appearing in the runaway flow region. Transition temperature and the 
jump of magnetization are calculated in two steps. In the first step, the tem- 
perature t* and the magnetization M* at the boundary K* are 

M*2 =M2(K,)~c*2-~a ~a= cg-l/2~-c 1~ 
(5.7) 

with the initial condition t (1 )= t  and M(1)=M.  These equations (5.7) 
relate t* and M* to the initial renormalized interactions {g*} and the 
dimensions {e, ea} via ~c*. In the second step, the flow equations for t(~c) 
and M(x) are evaluated as 

t(~c) = tf,(K), M(tc) = Mf~t(~c) (5.8) 

which are solved in Appendix B. At the first-order transition point, the 
temperature tl and the mgnetization M1 are expressed as t= t l  and 
M =  M I in (5.8); therefore connecting (5.7) with (5.8), we get the transition 
temperature and the magnetization jump 

1s K*2-- ~; a--ed 
tl-'P'K*'JA) bel/2~e~' M~ f20r  ce 1/2Ee-l'n (5.9) 
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at the first-order transition point. Note that they also can be evaluated in 
terms of the values of x* and {g*}. 

In order to do so, the tricritical behavior of the system D)y  must be 
investigated. According to the tricritical hypothesis, (22) the singular part of 
the free energy of the systems near the tricritical point can be expressed as 

f ( t ,  d, h )=  NJ/Y'"~(N~ Ig,I -~', ghlgtI . . . .  ./y,c) (5.10) 

where Ytc ( - d / ( 2 - ~ , c ) ;  etc: specific heat exponent) and x,. stand for the 
Kadanoff temperature and magnetic-field-scaling parameters, (23) respec- 
tively. ~b t denotes the tricritical crossover exponent. (22/ The nonlinear scal- 
ing fields for the tricritical parameter A (different parameter from bare 
defect interaction) and the mgnetic field h is denoted by g~ and gt, respec- 
tively. The latter field is related to the relative temperature as 

( V -  V,) /r , ,  A = 0  
g, oc [ r - L ( ~ ) ] / r , ( ~ ) ,  ~ < 0  (5.11) 

With the notations in Appendix B, the renormalized nonlinear scaling fields 
are expressed as 

gt(/c) = g,/c--"", g~(/r = g~/r ---', gh(/r = gh~c .... (5.12) 

From the results obtained in Section 4, the values of the critical exponents 
are 

y , c = 2 + O { e } ,  z , = 8 6 * + 0 { ~ } ,  x , . = 3  +O{e} 

fb t = z]y,,. = 46* + O{e} (5.13) 

where z, means the propagation away from the unstable tricritical fixed 
point, which is derived from the respective eigenvalue. The scaling relations 
tell us that the first-order transition appears for gt oc g~/~, oc g~/(4~.), and 
that the jump of the magnetization ( M  oc --(31:2/63gh) iS proportional to 

Using the results (B6) and (B1-B3), these nonlinear scaling fields were 
expressed: 
gj(tc) = g~ K ~ -- {c a g,(tr [~.(~c) + ~ ] 3 ~ c 2  -ea/a(K)[~.(K) "Jr- ~ '1  - 3  +~d/8 }zj 

(5.14.1) 

c _ [~2+~./~(-~ + , )  ~ -~/~ ] 246* z _ 8 . 6 o  _1/2, 6o=~  3g(3g/e- 2) ]1/2 
' k8~- 3B-/~)J 

g,(~) = g,~ ~,.-- t(~c)[c,~, s/6+~/~4(K)l~(~c) +/~[ ~/~ ~/2~g71/~(~)] 

- -  t i c  ~ 5/6+ed/24 IO~cO -~- ]~l 1/2--ed/24 g s  ~ 1/3)/s 2+e/3 (5.14.2) 
- -  \ t cO 

C t ~- 02 5/6 ~a/24 1 --02 + ]~l--1/2 + ed/24 g~ l/3 
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where the factors {c~,c,} were chosen so as to satisfy g ~ ( x ) ~ g ~  and 
g,(~c) ~ t at the tricritical fixed point. In general, the renormalized interac- 
tions {g(~c)} and temperature t(~c) were represented by nonlinear scaling 
fields {g~(~:), g,(~c)} and the irrelevant nonlinear scaling field in (B7); 
however, for simplicity, the principal trajectory (B5.1) was considered. 
Here nonlinear scaling fields are described as 

(5.15.1) 
g ; ( K )  = t(K)Ec,(e2) -~/3 YI1/ '3E~ , (K ' ) ]  o~ c 5/6+ecl/24(g)I-~c(K) -1- fl[ l/'2 a4/24] 

(5.15.2) 

Let us determine the value of ~c*. As the value of ~.(K*) becomes a com- 
plex number, introducing the shift 5 " (<0)  from the stability boundary as 

~.(K*) + 1 + 5 e -  6~(K*) ,  i.e., Be = -Seg,(~c *) (5.16) 

gives a value of 5 P for ~.(~*) real 

5 ~  > {(5T_2xf~)_4(3 T_ /~)~/2}/{2(3 + , ~ ) }  _ 5p . = { - 0 . 3 1 3 6  
- -0 .0935 '  

i.e., - ~ *  ~ - o ~  -J*+  (5.17) 

where 

~ K * )  = - [4 - (3 -Y- ,~ )~ /2 ] / [3  _ x/-3] 

A*e '/2 = - [ 5  P* + Y*(tr  gs(~c*)/6 

Similarly we define the critical value J *  

g~(~c*)= g ~ t c * ~ -  g *, gt(tg*)= gtlr .... --- g*, 

= { -0.0673 

- 1.4391 

(5.18) 

and determine 

gs(K*)= e2Y'~ 
(5.19) 

,c* = ( g ~ /g ,  ) ,/~z~, (5.20) 

Therefore the final expressions at the first-order transition point are 
obtained: 

g, = t l  = [ ~ l ~  + ~.1 ~YI e-(3/2 + B/3A2)] '2*(g,J/g*) 2/(~z~ 

A M  = M1 -- [ . / g {  I ~ + ~ 1  e2 Y1 } -1/2 e-~1/2)~3/2 + 8/3A2~]. (g~/g.),/~ 
(5.21) 
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where ~* = g*/t(~c*) and [ ] ,  stands for the value of [ ] at the critical 
value J * .  Numerically we compare the values of free energy for the upper 
sign (+ )  (which corresponds to fl=0.8453) with those for the lower sign 
( - )  (which associates with fl= 3.1547). They are tabulated in Table II(a) 
and II(b) for the cases of e = 1 and 2, respectively. These numerical results 
show that the free energy for the lower sign is most stable over the whole 
physical ranges of ed in the three- and two-dimensional systems. There the 
numerical expressions for the temperature shift and the magnetization 
jump are defined as 

_ _  ~ ~ 2 / z a  gt= g, (g~/g~) , d M -  d M * ( g J g * )  1/Z~ 

g * -  (c]) e" , ~ = {z~ for (a) and (b), 1/3 for (c)} 
(5.22) 

Values for e = 1 and 2 are tabulated in Table III(a) and III(b), respectively. 
For comparison, similar values for the cubic anisotropic X Y  system with 
e= 1, 2 obtained by Rudnick (21) (in whose expressions 64/405 should be 
replaced by 68/405) are tabulated in Table III(c). The magnitudes of gt 
increase (decrease) with increasing ea in the three-(two-) dimensional 
systems. In the pointlike defect systems they are approximately 20 (10) 
times those of the regular systems. The values of AM* decrease with an 
increase of e~ for ~ = 1, 2, and with increasing e for ~ fixed. In the pointlike 
defect systems they are approximately 1/3~ 1/2 of those of the regular 
systems. The exponent 1/z~ decreases with increasing ea, while it increases 
with an increase of e. The e dependence of 2~ in the defect systems comes 
from the e u2 expansion (notice that ~ in the regular X Y  systems is 
independent of e). 

Table II. Comparison of the Free Energy Expressed in (5.1)a 

Case  (a)  ~ = 1 Case  (b)  ~ = 2 

0 .8453 3.1547 0.8453 3.1547 

0 - 0 . 2 8 6  x 10 4 - 0 . 2 7 6  • 10 -3  - 0 . 1 2 6  x 10 -2  - 0 . 4 8 5  • 10 2 

0.4 - 0 . 2 1 4 •  4 _ 0 . 3 6 2 x 1 0 - 3  - O . 1 0 9 x l O  -2  - 0 . 5 4 0 •  2 

0.8 - 0 . 1 5 6 x 1 0  4 - 0 . 4 4 8 x 1 0  3 - 0 . 9 4 1 x 1 0  3 _ 0 . 5 8 7 •  

1.2 - 0 . 1 1 0 •  - 4  - 0 . 5 3 4 •  3 - 0 . 7 9 7 •  3 _ 0 . 6 3 0 •  

1.6 - 0 . 7 5 0  x 10 -5  - 0 . 6 1 9 •  3 _ 0 . 6 6 4  x 1 0 - 3  _ 0 . 6 6 8  x 1 0 - 2  

2.0 - 0 . 4 8 9  x 10 -5  - 0 . 7 0 3  x 10 3 - 0 . 5 4 1  x 10 3 0 .704 • 10 -2  

a The  u p p e r  ( lower)  s ign c o r r e s p o n d s  to  fl = 0.8453 (3.1547).  T h e  n u m e r i c a l  va lues  s h o w  t h a t  

the  free ene rgy  o n  the  t r a j ec t ry  for  the  lower  s ign is m o s t  s tab le  in the  ex tended-  a n d  the 

po in t l ike-defec t  X Y  sys tems  in three  a n d  two  d imens ions .  
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Table III. Numerical Values Associated wi th  the Behavior of the 
Temperature Shift and the Magnetization Jump at and near the 

First-Order Phase Transition Point a,b 

Values 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0 

Case ( a ) :  e = 1 C a s e  ( b ) :  e = 2 

g* c* AM* 1/zj  g* c* AM* I/Z~ 

0.503 0 . 1 9 9  0 . 8 1 7  3.634 0.448 0 . 2 8 1  0 . 7 2 0  5.144 
0.515 0 . 1 8 5  0 . 8 0 2  2.900 0.444 0 . 2 8 9  0 . 6 8 1  4.529 
0.520 0 . 1 8 0  0 . 7 8 3  2.490 0.440 0 . 2 9 6  0 . 6 4 8  4.098 
0.521 0 . 1 7 8  0 . 7 6 2  2.216 0.437 0 . 3 0 3  0 . 6 1 8  3.776 
0.522 0 . 1 7 7  0 . 7 4 0  2.019 0.434 0 . 3 0 9  0.591 3.521 
0.522 0 . 1 7 7  0.720 1.868 0.432 0 . 3 1 4  0.568 3.311 
0.523 0 . 1 7 7  0.700 1.746 0.430 0 . 3 1 8  0 . 5 4 7  3.137 
0.523 0 . 1 7 7  0.681 1.645 0.429 0 . 3 2 1  0 . 5 2 8  2.987 
0.523 0 . 1 7 7  0.664 1.561 0.427 0 . 3 2 3  0.5ll 2.857 
0.523 0 . 1 7 6  0.648 1.488 0.427 0 . 3 2 5  0 . 4 9 5  2.744 
0.524 0 . 1 7 6  0.632 1.425 0.426 0 . 3 2 6  0.481 2.643 

Case (c): Cubic anisotropic 

z = l  e = 2  

0.026 0 . 1 6 8  2.389 3 0.052 0.168 t.689 1.5 

(a) and (b) are associated with the three- and two-dimensional extended (ed> 0) [pointlike 
(ea= 0)] defect X Y  systems, respectively. (c) corresponds to the regular cubic-anisotropic 
X Y  systems. The quantities (g* ..... 1/z~) are defined in footnote b. g* and AM* express the 
magnitudes of the temperature shift and the magnetization jump at the transition point, and 
1/z3 stands for their power law behavior. 

bNote: gt = g , ( g j g , ) 2 / ~ ,  g ,  = (~)~ ,  A M  = AM*(g,~/g*~) 1/=~, _~ = {z~ for (a) and (b), 1/3 for 
(c)). 

These results are available when {gs(K*), gc(tc*), 6(~c*)} approaches, 
not the fixed point, but the marginal boundary of the stable regime. If the 
set of interactions approach the D~c r fixed point inside the stable region, it 
causes a second-order phase transition. Therefore, the surface 2gs + 3gc-  
48(6-  6*)= 0 is a surface of tricritical points. When the set of interactions 
{g(x*)} lie close to, but below the plane, there exist regions satisfying 
(5.4), i.e., a first-order phase transition (5.22). 

6. C O N C L U S I O N  

The static and dynamic critical behavior of extended defect XY-spin 
systems in cubic anisotropic crystallines were investigated. Applying the 
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field-theoretic RG approach together with a e~/2-type or e-type expansion, 
the static and dynamic behavior was evaluated up to two-loop order within 
the frame of the Langevin equation. Results were obtained for (i) fixed 
points, (ii) fixed point stability, (iii) flow trajectory, (iv) static and dynamic 
critical exponents for perpendicular and parallel components on the trajec- 
tory of the second-order phase transition, and (v) behavior of the first- 
order phase transition near the tricritical point. 

As mentioned above, fixed points (i)-(vii) have been previously 
investigated. Fixed point (viii), reported here for the first time, belongs to 
the el/2-type expanded systems. It displays a most interesting cooperative or 
competitive effect between cubic anisotropy and random defect interaction. 

Let us consider the reasons. The e~/2-type expansion originates in 
situations where the {fl} functions in the RG equations are degenerate in 
single-loop order but solved in two-loop order. Why do such situations 
occur in the lsing systems for (vii) or in the XY-spin systems for (viii)? In 
the first case, it is the fact that, in single-loop order, the fis function for the 
isotropic interaction g,. of the N-component systems has only for N = 1 the 
same gradient as that of the fla function for the random defect interaction 6 
in the space (g,, 8), and the fact that their gradients become unequal due 
to the nonlinearity in the two-loop order contributions. Furthermore, the 
interaction 8 is regarded as unit vector in the space (gs, 8), i.e., as single 
component in the spin space. In the second case the gradients of the/?c and 
fia functions become the same for N =  2 in space (g,, go, 8) in single-loop 
order and their gradients become different in two-loop order. Furthermore, 
the interactions g,. and 6 are individually regarded as single components in 
the spin space, and they behave totally as two-component spins. This 
clearly indicates cooperative phenomena among interactions gs, g,, and 6. 
Thus there is high probability of finding such systems with other com- 
ponents, e.g., N =  3, 4, 5,... studied under el/2-type expansion. Presumably, 
there are also similar possibilities with systems utilizing the e 1/3, el/4,..., 
expansions. There we may expect that the/~ functions in the RG equations 
are degenerate up to two (three,..., )-loop order for e ~/3 (e~/4,...,) expansion 
and become nondegenerate in the next-higher loop order. 

According to results obtained on fixed point stability, the system Pxr 
is most stable as regular systems, but with the appearance of defects the 
extended defect system Dxr becomes most stable. This fixed point has quite 
interesting properties, i.e., its flow trajectories in the interaction space 
approach the fixed point Dxr, monotonically (nonoscillatorily) in a small 
value of 0 <~ ea/e < 0.02733 but spirally in a large value of 0.02733 < eJe. 
The other fixed points are unstable in certain directions of the interaction 
space, i.e., their flow trajectories suggest first-order phase transition. 

Regarding the trajectory of second-order phase transition (i.e., flows 
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heading toward fixed point D)y with an increase of the correlation length), 
the values of the static and dynamic critical exponents {q~, v• vii, 7, tlz, till, 
~, z• zlt , e} of order e I/2 were evaluated and ed was considered as a non- 
negative real number. The crossover exponent for randomness 
(~0 = %  + ~dvp) is positive, i.e., the randomness of the defects is relevant in 
X Y  systems. Its value increases with an increase of ed and e. Pointlike and 
extended defects play a role in cutting the path of the spin spin or the 
energy-energy correlation. As a result, the effective medium dimension 
seems to be reduced, and the short-range correlation becomes strong, while 
the long-range correlation (fluctuation effect) is weakened. That is, the 
critical exponents approach classical values. These tendencies are stronger 
in the perpendicular component than in the parallel component. Compar- 
ing these critical exponent values with those obtained by Lawrie et al. ~12~ in 
the Ising systems without cubic anisotropy, the static and dynamic critical 
behavior of the present systems appear more readily available because the 
fluctuations of the order parameters are suppressed by the cubic 
anisotropy. 

Regarding flows emanating from the fixed point D~y: such flows are 
not attracted by any other fixed point, and are of first-order phase trans- 
ition. The first-order transition occurs as a transition from the uniaxially 
ordered state to the para-state, due to cubic anisotropy. The crucial dif- 
ferences between extended defect X Y  systems with cubic anisotropy and the 
regular X Y  system with cubic anisotropy are derived from the defect 
interaction 6, the extended defect dimensions ee, and the e l/2 expansion. 
The main features here are as follows: 

(1) A transition point for the real values of 4 shifts by - Y  (satisfy- 
ing - 5  p* _ ~< - ~  ~< - 5  Q* ) from the marginal boundary. 

(2) The systems take the lowest free energy at point 5 P*. 

(3) At the transition point, the temperature shift g* in the three- 
(two-) dimensional systems increases (decreases) with increasing ej, and 
the magnetization-jump A M *  in both dimensional systems decreases with 
an increase of ed. 

(4) Near the transition point, behavior is expressed with the 
exponent 1/z4 whose values decrease (increase) with increasing ~d(e). 

Finally a comment on defect effects in two-component systems. In the 
present systems, the primary role of cubic anisotropy is in first-order trans- 
ition as well as in the regular cubic-anisotropic X Y  system, and the 
cooperation between the defect interaction and the cubic-anisotropic 
interaction yields a e 1/2 expansion. This transition belongs to fluctuation- 
induced first-order transition. On the other hand, phase transition in the 
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superconductors is weakly first order due to the long-range effects of the 
electromagnetic field, according to the study by Halperin et al.(24); this con- 
clusion for type-II superconductors is based on the runaway behavior of 
the RG trajectories, calculated within the 4 -  e expansion, which is con- 
sistent with calculations by Coleman e t a / .  (25) and Lawrie. (26) However, in 
superconductors with quenched random defects (paramagnetic impurities), 
the phase transition becomes second order within the 4 -  e expansion, 
according to Boyanovsky e t a / .  (2v) 

In conclusion: (1) defect effects restore a second order of phase trans- 
ition; (2) the e-expansion form does not change into a e~/2 expansion; (3) at 
the fixed point the eigenvalues consist of one positive real and two complex 
eigenvalues, i.e., the RG trajectories spiral into the fixed point and give 
oscillatory corrections to scaling. This feature is also seen in the extended 
defect X Y  systems D x r .  
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A P P E N D I X A .  D I A G R A M S  A N D  C O N T R I B U T I O N S  

Diagrams and contributions for F (1'1) a r e  listed, respectively, in 
Fig. A1 and Table AI; 

Table AI 

butions 8 F (~'~ ) 8 F(  ~'I ) i8 F ( ~'1) 
F(1'1)[ p 2 . . . .  o - -  

Class of diagram"-....~ ap~ p2=~=o aPt v . . . .  o ao, , . . . .  o 

(1.1), (1.2) -1/~ 0 0 0 
(2) - 1/g 0 a2gT1 gI1 

( 3 . 1 > ( 3 . 4 )  [1 0 0 0 
(4.1)-(4.3 ) 12 13 a213 14 
(5.1),  (5.2) ~l l /g  0 0 0 
(6.1), (6.2) 2g"[,/(e + g) 0 0 0 
(7.1), (7.2) J1 J2 a2J3 J3 

(8)  71 0 a2J5 J5 
(9) 72 7 3 a2311/2 3I'1/2 
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In  T a b l e  AI  
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I1- - j  I~ =-~-~ 

1 3 4 
13 = 8e '  /4 ~ -- ~ In -~ 

7 , - - ~  1-~,  - ~  1+~, 8g 

- (2e + g + 3eg/2 ) l ( 1 - g/2) 
J1 = eg(e + g) , J 2 -  4(e + g) '  J3 - ~(e + g) 

- [1 - (3 /2 )g]  
J5 =- g2 

D i a g r a m s  a n d  c o n t r i b u t i o n s  for (1,3) (1,3) F~g, - F~g c are listed, respect ively,  in  
Fig. A2(a) ,  a n d  T a b l e  A I I ( a ) ;  d i a g r a m s  a n d  c o n t r i b u t i o n s  for F(~ 2,2) are  
listed, respect ively,  in  Fig.  A 2 ( b )  a n d  T a b l e  AI I (b ) .  

(1.1) (t.2) (2) (3.1) (3.2) (3.3) (3.~.) 

(4..1) (~..2) (&3) (g'.l) (,,r (6.1) C6.2) 

~6 ~ 1G 1G 

(z~) (7-2) (S~ (q) 
Fig. A1. Diagrams contributing to the F (1,~) vertex function. The number on the diagrams 
stands for the number of diagrams (weight). The symbols e ,  D, and * �9 �9 are associated 
with the gs, go, and 6 interactions, respectively. The lines ~ a n d  - -  correspond to the 
response and correlation lines, respectively. 



Table All 

Class of diagram 

Case (a) Case (b) Contribution 

(1.1), (1.2) (3.1), (3.2) 
(2) (1), (2) 

(3.1)-(3.5) (4.1)-(4.4), (5.1)-(5.3) 
(7.1)-(7.3) (7.1), (7.2), (8.1), (8.2) 

(4), (5) (14), (15), (16) 
(8.1), (8.2) (6.1), (6.2) 

(10.1) (10.5) (9.1)-(9.3) 
(6), (13), (14) (17), (18), (19), (20), (21) 
(11.1)-(11.3) (10.1), (10.2), (12.1), (12.2) 

(9.1), (9.2), (12.1)-(12.3) (11.1), (11.2), (13.1), (13.2) 
(15.1), (15.2) 

(16) (22), (23) 
(24.1), (24.2) 

L 

~L 

~c 
L 

le 
b 

4Ir 

(1.1) (1.2) (2 )  (3.1) (3.2) (3.3) (3.43 (3.~') 

(/~1 (~) (~) (7.1) (7.2) (q.~) 
ZDC 
(g.1) ( I t .2)  

so 32 3 ~~ [----~s ] 

(?.1) (?.2) (1o.1) (1o.2) (lo.3) (to.4) 

t~[32] 1r ~212/,] o[32] 2/;[0] 

(11.2) (11.3) (12.1) (12.2) (12.3) 

ol:-c] 

(10..~1 (11.1) 

( 1 3 )  (,141 (IS. l)  

-~C-IG] ~ C9c.1 

(1~21 (IG) 
Fig. A2. (a) Diagrams contributing to the F~gls'3) and F~gl, '3) vertex functions. The diagrams are 
drawn in the static case in order to decrease the number of diagrams. The first and the second 
(inside [ ]) numbers on the diagrams denote the weight of the diagrams for the F(g~ 9) and 
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In Table AII 

1 ( 2 )  1 ( ~ )  _ _  2 ( . ~ _ . j )  Ia----~ 1-- , ]~--=e 1-- , Ib--g(e+g ) 1-- 

7d-- 1 - ]  4g(e +g) e(g + g ~  1 , 4----- 

I - I d~q(a~p~) ~-~/~ 

Here the contributions of the integrals of the logarithmic terms are omitted 
for simplicity. 

ci6 

(1) 

32 
q6 -16 -f2 T ~ E 6 

>--Q. >.-0( >.-.CX >-.00( >--00( >---0(K >-.0CK 
C2 ) C3.1 ) (3.2) (/..1) (~.2) (4.3) (d..dO 

IG 
T 8 3 -G4 -4S -64  -48  -G4 

~-CK >o.-0~ >o~ >-..(Zx >..(~ >.-0Q >-oC )o~, 
(~i.1) (.r (r (6.1) (6.2) (7.1) (7.2) ($.1) 

(8.2)  

>1 - 2 ~ - g , - i 7 2  -,2&' -?g 
- >--G >4_ 

(q.l) (?.2) (?.3) ( lo. i) (1o.2) (11.1) (11.2) 

-12S "76 -2~6 -f?2 38& 3S~ 4?2 IGX 

. i ~ "  >- - X i  

(12. 1 ) (ft.2) (13.11 (13.2) (1~) (t~) (16) (17) 

3S/, f~36 76g 7G g 3g4. 3g4. gr ~g 

D::C >-G 
(! g) (1'/) C2o) (21) (22) (23) (~.1) (24.2) 

F{gl/3) vertex functions, respectively. The number inside [ ] in the cases of ( ) or (~, 1) for 
= 1,..., 15 corresponds to that obtained by replacing the interaction gs with g,. (b) Diagrams 

contributing to the F~a TM vertex function. These diagrams are drawn in the static limit and the 
number on the diagrams stands for weight. 
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A P P E N D I X  B. FLOW OF R E N O R M A L I Z E D I N T E R A C T I O N S  

A study of the flow of renormalized interactions { g(x)} depending on 
the renormalization parameter x by means of the characteristic curve 
method. Change variables in (4.1) 

gs(K, a) = Gs(x, a) xy, 

x =- K • ~, y = a ~d, 

gcOc, a) = Gc(~, a) xy, 6(~, a) = G,~(x, a).~ 

-~-= ~ ,  [a]  = [tc•162 g = e + e d  

and introduce the new variables 

~(G~) = go(to, a)/g.~.(x, a), ~(Gs)  = fi(K, a)/g,(x, a) 

if necessary. Regard ~c• as ~c, and the dimensions of xy equal those of ff in 
the unit of ~c. For the sake of simplicity, consider the case xy = ~. Then the 
renormalized flow (characteristic curve) equations, which determine the 
renormalized interactions, temperature, and coordinate anisotropy, are 
expressed from (4.1) and (4.2) by the differential equations 

d(Gs~)  ( 3 ~  ) ~ G s y  
- e  dx = 2 + ~ - 2 4 o ~  ~ 2 

- e  ~x = + ~ . - 1 6 ~  ~ 2 

dln~c2t(K) (~  1 ~ ) 
e, dx - + ~ ~ c -  4 ~  a s y  

- a ~ x = a a ~ G ~ y 2  

with the initial conditions 

Gs(1)=gs, Gc(1)=gc, G~(1)=6, t (1)= t, y (1 )=  1 

(ii) 

The solutions for these equations give the following flow relations: 

Pxr  case on the gc = 0 = ~ line, 

Is(x- 1) 
G s ( ~ c ) - [ 5 ( x _ l ) / 3 ~ ] g s + l ,  t(tr = ~c 2t[_ 3~ g s + l  
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(iii) Pz case on the g,  = 0 = 6 line, 

Gc(~C) = g~ 
[ 3 ( x -  1)/28] g~ + 1' 

[3q-~) 
t(~) = ~:-~t L 2 8  

- -  g~ + 1 ] 1/3 

(iv) U case on the g~ = 0 = gc line, 

6 
G6(~:) - 

[ 1 -- (x -- 1 )/e" (1 - ed/16) 16C5 ] 1/(1 -~a/16) 

[ 1 tOc )=~c-2 t  l - X - 1  1 - - ed  16c5 
8 

(v) P~cv case on the 3 = 0 plane, 

( 4 .  ~ 5 ( ~ o  + 2 /3)  3 ( o~ ) 2 ( ~  o + 2 /3)  

x - l _ 2  ~ s  
~o [ x d ~ . )  - x~ (~o ) ] ,  

8 gs (~c0 + 2/3) 3 

Xs(o~) = [Y2 /3  + o~/3 + 4 / 4 5 ] / ~  -5 

(vi) Dxy case on the gc = 0 plane, 

(~o ']5{  ~ -  1/24 ~2 2-/~60~ 2// ~ - -  1/24 ,~3/2 
G,(o~)=gs\--~6 j \ ~ o _ 1 / 2 4 J ,  t(tc)=~c tk--~6 ) ~ o - 1 / 2 4 )  

( ~ - 1/24 ,~d/8 x - 1 (o~ 0 - 1/24) 2+ ~w8 
Y=  \ o ~ 0 -  1/24,] ' 8 = 8gs (~o)  s [ X 6 ( ~ 1 7 6  

/'(s) [ ~0 r(2 + 8d8-  ( ~ _ 4 )  -(~+~/~ ~ 
X6(~-) ~- r (3  + 8281 , ~c~_-}.~ 0 g 4  , ~ _  

(-1)+ o~(2 s~ ~ _ ~  
+ E r(1  - 8~/8 + / )  j= 1 

(vii) D+ case on the g: = 0 plane, 

/ ~ ,  x /o% 1/1 ~ \ u a  
G~(~) = gc \ - ~  j , \-~-a J \ ~ o - -  1/16/  

(~ - 1/16 )o~/8 ~ -  1 ( ~ o -  1/16) ~ s  

Y = \ ~ o ~ - l ~ J  ' 8 - -  8g,.(o~0) 3 

X7(~)  ~ - - L  ( ~ - - z ~ a 2 - -  1 Z ~  al 
a 2 \ 16] 8a I ( ~ -  16] - - -  

a2 =- 2 -- ea/8, 

d~" 1 ao 

162ao 

a I ~- 1 -- 8d/8 , ao = - -ed8 
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(viii) DCxy case 

1 - 1  

Gs(O%) = gs \ ~ o J  \ O% + a o%o + ~J 

t(~)=~: 2t\7cO,1 \ ~ ] \ ~ j  , Y=\O%o O%---~J 

x -  1 2 (o%o)2+'d/8(o%o+/~) 3 ~/8 

gs (o%o + a)3 

( W + ~ ) 2  d W  f Xs(~- ) J (W) 3 + ~d/8( W-~  fl)3--ed/8 

[x8(O%) - xs(#o) ] 

(B1) 

(B2) 

(B3) 

where 
~ - 2 / 3 ,  1 - o2//~-_- [1 + 2/(3o%o)] [1 - 1/(24~o)] (B4) 

and the subscript 0 denotes the initial value, e.g., o%o = O%(1). 
To derive the principal trajectory connecting the fixed points, after the 

cumbersome calculations we can express (B3) like 

e2 (o%o) 2 +'~/s(o%o + ~)3  - e,4/8 
x - - l =  

g, (o%0 + ~)3 

• X~(W)(w)~ + ( B) Jlw=~,o3 ed/8~W~- 3 ad/8 for j = 1, 2 (B5) 

- g ~ p - ( 4 +  3,f~) 

•  3 6 5 x / 3  fi) ] (w +/~) ( - - ~ ) ~ / 8  for o2//~ = ( 3 + xf3)/6 
(B5.1) 

for a~ = 0  

A, = 4o2(/~- c2)/fl 2 

t o( Y2(w) - -2  + 8 4 ] wi (w + fl)/(w + ~)3 
i 

a l  = (B 2 - 6 a p +  6a2)//~ s, Ao - a 2 / L  

A z =- -3(f l  2 -- 6o2/~ + 6o22)//~ 3, A3 -= -2(/~ 2 - 6o2fl + 6o22)/]~ 4 

Bo = _~2/fl, B1 = -4(2fl--  3o2)o2//~ 2 

B2 -= --(7fl 2 - 6aft-- 12a2)//~ 3, B 3 --= - 6 ( f l -  2 a ) / f l  3 

(B5.2) 
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where the expression for Y1 is available only when the initial values of ~ o  
and ~ o  are chosen so as to satisfy ~//~= (3 _+ x/3)/6, and then Y2 holds 
also because a~ = 0. Substituting (B5), G,(~c), and y into gs(~c)= G~(K)xy, 
we can derive the relations 

c ~ cO  ~ c -  c O  (B6) 
( ~  + a)~ g+(~c) (No + a)3 gsx 

1 for j =  1,2 (B7) [1 - e2 Yj(~)/g,(~c)] = [1 - eZYj(~o)/g,] x 

The first expression is associated with the nonlinear scaling field g,(~)  
described in Section 5. The second relations are connected with the two 
principal trajectories 

g~ : e2 Y~(~) (BS) 

and 

g, = e 2 ~  Y2(~) (B9) 

The first curve is the principal trajectories in the interaction space 
(g~., gc, 6), which joins the fixed points on the g~ = 0 plane [Pxv, Dzr] 
with those on the g, = -~g ,  plane [Uxr, D)y]. All the principal trajec- 
tories in the region of - c  i <  gjg,<O are contained. The second curve 
corresponds to the rest of the principal trajectories connecting their fixed 
points with those on the gs = 0 plane [P1, D J .  
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